

How we teach calculations:

Calculation Protocol for Mathematics

Be the best that you can be!

About our calculation policy:

The following calculation policy has been written in response to the New National Curriculum 2014 and aims to give a consistent and smooth progression of learning, within mathematics, for pupils across the school. Please note that early learning in number and calculation in Reception follows the 'Development Matters' EYFS document, and this calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

Age stage expectations:

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at, being moved onto the next level as soon as they are ready, or working at a lower stage until they are secure enough to move on - our aim is to create effective and efficient mathematicians.

Providing a context for calculation:

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons (one method does not meet all purposes).

Choosing a calculation method:

Children need to be taught and encouraged to use the following processes in deciding what approach they will take to a calculation; to ensure they select the most appropriate method for the numbers involved:

Rationale for KS1

Children in Years 1 and 2 will be given a really solid foundation in the basic building blocks of mental and written arithmetic. Through being taught place value, they will develop an understanding of how numbers work, so that they are confident in 2 -digit numbers and beginning to read and say numbers above 100. A focus on number bonds, first via practical hands-on experiences and subsequently using memorisation techniques, enables a good grounding in these crucial facts, and ensures that all children leave Y2 knowing the pairs of numbers which make all the numbers up to 10 at least. They will also have experienced and been taught pairs to 20 .

Their knowledge of number facts enables them to add several single-digit numbers, and to add/subtract a single digit number to/from a 2-digit number. Another important conceptual tool is their ability to add/subtract 1 or 10, and to understand which digit changes and why. This understanding is extended to enable children to add and subtract multiples of ten to and from any 2 -digit number. The most important application of this knowledge is their ability to add or subtract any pair of 2 - digit numbers by counting on or back in tens and ones. Children may extend this to adding by partitioning numbers into tens and ones.

Children will be taught to count in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s , and will have related this skill to repeated addition. They will have met and begun to learn the associated $2 x, 3 x, 5 x$ and $10 x$ tables. Engaging in a practical way with the concept of repeated addition and the use of arrays enables children to develop a preliminary understanding of multiplication, and asking them to consider how many groups of a given number make a total will introduce them to the idea of division. They will also be taught to double and halve numbers, and will thus experience scaling up or down as a further aspect of multiplication and division. Fractions will be introduced as numbers and as operators, specifically in relation to halves, quarters and thirds.

Rationale for Lower KS2

In Years 3 and 4, children build on the concrete and conceptual understandings they have gained in Year 1 and 2 to develop a real mathematical understanding of the four operations, in particular developing arithmetical competence in relation to larger numbers.

In addition and subtraction, they are taught to use place value and number facts to add and subtract numbers mentally and will develop a range of strategies to enable them to discard the 'counting in ones' or fingers-based methods of the infants. In particular, they will learn to add and subtract multiples and near multiples of 10, 100 and 1000, and will become fluent in complementary addition as an accurate means of achieving fast and accurate answers to 3 -digit subtractions. Standard written methods for adding larger numbers are taught, learned and consolidated, and written column subtraction is also introduced.

This key stage is also the period during which all the multiplication and division facts are thoroughly memorised, including all facts up to the 12×12 table. Efficient written methods for multiplying or dividing a 2 -digit or 3 -digit number by as single-digit number are taught, as are mental strategies for multiplication or division with large but friendly numbers, e.g. when dividing by 5 or multiplying by 20 .

Children will develop their understanding of fractions, learning to reduce a fraction to its simplest form as well as finding non-unit fractions of amounts and quantities. The concept of a decimal number is introduced and children consolidate a firm understanding of one-place decimals, multiplying and dividing whole numbers by 10 and 100 .

Rationale for UKS2

In Year 5 and 6, children move on from dealing mainly with whole numbers to performing arithmetic operations with both decimals and fractions. They will consolidate their use of written procedures in adding and subtracting whole numbers with up to 6 digits and also decimal numbers with up to two decimal places. Mental strategies for adding and subtracting increasingly large numbers will also be taught. These will draw upon children's robust understanding of place value and knowledge of number facts. Efficient and flexible strategies for mental multiplication and division are taught and practiced, so that children can perform appropriate calculations even when the numbers are large, such as $40,000 \times 6$ or $40,000 \div 8$.

In addition, it is in Y 5 and Y 6 that children extend their knowledge and confidence in using written algorithms for multiplication and division. Fractions and decimals are also added, subtracted, divided and multiplied, within the bounds of children's understanding of these more complicated numbers, and they will also calculate simple percentages and ratios. Negative numbers will be added and subtracted. Algebra will also be introduced.

Year 1: Add with numbers up to 20

Use numbered number lines to add, by counting on in ones, encouraging children to begin with larger number and count on.

Children should:

- have access to a range of equipment g. Number lines, counting apparatus, Numicon, 100 , squares, bead strings ets.
be shown numbers in a range of contexts
Read and write number sentences using the $=$ and + signs
Interpret number sentences including missing number problems e.g. $3+==8$

B -5

Key vocabulary add, more, plus, and, make, altogether, total, equal to, equalls, double, rnost ${ }_{\text {, }}$ count on, nurnber line

Key Skills for addition at Year 1

* Read and write numbers to 100 in numerals (1-20 in words)
- Count to and across 100
* Recall bonds to 10 and 20, and addition facts within 20 (story of 5,6,7, 8,9 and 10)
* Count on in ones from a qiven 2-digit number
* Add two single-digit numbers by counting on
* Add three single-digit numbers spotting doubles or pairs to 10
* Count on in tens from any qiven Z-diqit number
* Add 10 to any given Z-digit number
- Use number facts to add single-digit numbers to two-digit numbers, e.g. use $4+3$ to work out $24+3,34+3 \ldots$
* Add by putting the larqer number first
- Recognise doubles to double 6

Year 2 Add with 2-digit number's dewlop mantal fluancy with ploce waluz and addition uring 2 -digit numbers, then mowe to formal methods

Add 2 -digit numbers and tens, 2 -digits and units, two 2 -digit numbers, first

 proctically usina equipment (Dienes Rase 10, Numicon, 100squares) then usira

Add pairs of 2-digit numbers, moving to the partitioned column method when secure adding tens and units:

3Tif 1 Only peoride anamples that do NOT cros Pe thang boundary untienvy are secure with the method itheif.

STEP2:Oncechldrencanadda multiple of ten to a zedigit numbermentily (e.p.60+11). they areready foradding pairsof 2 -digit numbers than DO cros He tenc boundary 0.0 . 50 43).

 line, sum, tens, units, partition, addifion, calumn, tens boundary

Key Skills for addition at Year 2

 $\rightarrow 0 \mathrm{ad} . \operatorname{cg} \mathrm{g} 6 \times 39$.
 cg. 54 is 50 and 4 máre

* Know searely mumber pairs far all the numbers up to and includigg 12
- Count in stests of 2. S. and 10 fromp.

* Krom paifs with a tatal of 20 ond multiplas of 20 ta 100
- Count an in uncs and ters from any given 2 -tigit mumber
- Add two ar threes s igis-ligit mumbers
 Add 10 and amall multiples of 10 to eny given 2 -digit number
- Add aty pair of \mathbf{Z}-digit mumbers
* Kwoll that adeing sex be done in aty oveder
* Sulva problews with dedition wifg cancrate objects, pietarial reprasentations, involving numbers. quentitics and mesuras, applying writtan and mental metheds

Year 3 Add numbers up to 3 digits

User partitioning method for addition to add two an thrae 3-digit numbers an throe 2 -digit numbers (sae yar 2) Degin to use compact column addition fo add numbers with thene

When do we know children are ready for this method?

Do thay know oddition and subtraction facts to 207
Do they understond ploce walue and can they partition numbers?
Can they explain thair mental strategies orally and necord them using informal jottinger

Children wha ane very secure and confident with 3-digit expanded column addition, should be maved anto the compoet calunn oddition method, invalving carrying. A carparison of the partitioning addition method to compact method is useful to show pinimisina the number of stecs

Key wotabulary odd, more, plus, and, maks، altogether, total, squal to, squals, double, most, count on, number line, sum, tens, units, partition, addition, column, ters boundary, hundreds boundary, increase, vertical, "curry', Expanded, compact

Key Skills for addition at Year 3

- Know pairs with adach total to 20
* Know pairs of multiples of 10 with a total of 100
- Add ony two 2-digit numbers by counting on in $10 s$ and $1 s$ or by using partitioning
* Add multiples end near multiples of 10 and 100
- Add 1,10, 100 to 3 -digit numbers
- Understand place value in 3-digit numbers
- Perform place walue additions without a struggle. (E.g. $300+8+50=358$)
* Use place volue and number facts to odd a 1-digit or 2-digit number to a 3digit number. (Eg. $104+56$ is 160 since 104+50=154 and 6+4=10 and $676+8$ is 684 since $8=4+4$ and $76+4+4=84$)
- Add pairs of 'friendly 3-digit numbers mentally, eg. $320+450$
* Begin to odd amounts of money using partitioning.
* Solve problems with addition using number facts, place value, missing numbers.

Year 4 Add number's with up to 4 digits
Continue to use the compact collumn method, adding units fir'st and carrying underneath he calculation Also include money and measures contexts.

Children use and apply this method to money and meosures.
Key vocabulary add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, units, partition, addition, column, tens boundary, hundreds boundary, in- crease, vertical, 'carry', expanded, compact, thousands, hundreds, digits, inverse

Key Skills for addition at Year 4

Select appropriate method, mental, jottinqs, written-and explain why
Add any two 2-digit numbers by partitioning or counting on
Know by heart/quickly derive number bonds to 100 (e.q. $32+68$) and to $£ 1$ ($64 p+36$ p)
Add to the next hundred, pound and whole nurnber (e.q. $234+66=300,3.4+0.6=4$)
Perform place value additions without a strugqle. (E.q. $300+8+50+4000=4358$)
Add multiples and near multiples of 10,100 and 1000 .|
Add $£ 1,10 \mathrm{p}, 1 \mathrm{l}$ to arvounts of money
Use place walue and number facts to add 1-, 2-, 3-and 4-digit numbers where a mental calculation is appropriate'. (E.g. 4004 +156 by knowing that 6+4=10 and that $4004+150=4154$ so total is 4160)

- Perform inverse operations to check
- Solve 2-step problems in context
- Continue to practise a wide range of mental addition strategies e.g. Round and adjust, near doubles, numbers bonds, partitioning and recombining

Year 5 Add numbers with more than 4 digits
Including money, measure and decirnals with different numbers of decimal places

Use colurnn addition to add two or three whole numbers.

Understand the place value of tenths and hundredths and use this to align numbers with differing numbers of decirnal place.

Kay wabalaryi add, more, plus, and, make, altogether, total, aqual to, equals, double, mast, count on, rumber line, sum, ters, units, partitian, addition, column, ters boundary, hundneds boundary, increase, vertical, 'carry', expanded, compact, thourands, hundreds digits, in- werse, decimal ploces, decinal pointi, tenthes, hundredthes, thourandthes

Key Skills for addition at Year 5

- Lacate 5 and 6 diqit numbers on a landmarked line; use this to compare/order numbers.
- Round to ten, a hundred, a thousand on ten thousand.
- Use rounding to check accuracy
* Understand a one-place decimal number as a number of tenths and a twoplace decimal number as a number of hundredths.
* Add or subtract 0.1 or 0.01 to/from ary decimal number with confidence, e.g. $5.83+0.01$ or $4.83-0.1$
- Add and subtract mentally with confidence - where the numbers are less than 100 or the calculation relies upon simple oddition and place value.
* Confidently add numbers with more than 4 -digits using a secure written method, including adding 'piles' of numbers
- Use inverse to check calculations

Year 6 Add several numbers of increasing complexity

Including money, measure and decinals with different numbers of decimal ploces

Use compact column method to add in context of money, measures, including decirvals with different numbers of decimal places.

Pupils should apply their knowledge of a range of mental strategies, mental recall skills, informal and formal written methods when selecting the appropriate method to work cut addition problems. Opportunities to discuss the appropriateness of
 methods need to be planned for.

Key vacobulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, caunt on, number line, sum, tens, units, portition, plus, oddition, column, tens boundary, hundreds boundory, increase, , corry, exponded, compoct, vertical, thousands, hundreds, digits, inverse, decimal places, decinnal point, tenths, hundredths, thousandths

Key skills for addition at Year 6:

* Perform mentol colculations, including with mixed aperations and large numbers, using and proct icicig a roange of mentol strategies.
- Solve multi-step problems in context, deciding which operotions and methods to use and why.
- Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- Read, write, order and compare numbers up to 10 million and determine the value of each digit.
- Round any whole number to a required degree of accuracy.
- Pupils understand how to add mentally with larger numbers and calculations of increasing complexity.

Year 1 Subtract from numbers up to 20

Children consolidate understanding of subtraction proctically, showing subtraction on bead strings, using cubes etc. and in familiar contexts, and are introduced to more formal recording using number lines as below (and then empty ones):

$5-3=2$

Madel subtraction practically and using number tracks, number lines and 100 squares and proctically. Find the difference between - this is to be done proctically using the languoge 'find the distonce between' and 'how mary mome thani'

> This will be introduced proctically with the lenguoge 'find the distance between and 'how mary more?' in a range of fomiliar contexts.

Key yocabulary equal to, take, take-away, less, minus, subtract, leoves, distance between, how many more, how many fewer/less than, mast, least count back, how many left, how much less is...

Key Skills for subtraction at Year 1

* Give a number, say one lless
* Count back in ones to from 100 and from any sinqle-diqit or 2-digit number.
* Count bock in tens from ary 2 -diqit number
* Locate any number on a 1-100 grid or a beaded line 0-100.
* Know number bonds to 10, also know what is left if objects are'taken from 10 , e.g. 10 fingers, fold down 4 : leaves 6 standing.
* Solve one-step problems involving subtraction, using concrete objects (bead strings; objects, cubes) and pictures, and missing number problems
* Recoqnise the - and = siqns, and use these to read and write simple subtractions.

Year 2 Subtract with 2-digit numbers Use practical equipment such as Dienes and Nurnicon to model subtraction.

Subtroct first on a numbered number line, then on an empty number line, by counting back, aiming to develop mental subtraction skills.

Children should also learn haw to count on in onder to find the differance. They shauld be given opportunities to explore when to count on and when to count back.

Key yocabulary equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is..., difference, count on, strategy, partition, tens units

Key skills for subtraction at Year 2

* Recognise that addition and subtraction are inverse operations and understand that $10-4=5$ ar well ar $6-4=10$.
* Count back in ones or tens to take oway, e.q. 27-3 = or 54-20=.
* Begin to count up to find a difference between two numbers with a small gap (42-38). Know when to count on and when to count back
- Recall and use subtraction facts to 20 fluently
- And derive and use related fact to 100
* Subtract using concrete objects, pictorial representations, 100 squares, Dienes, Numicon and mentally, including a 2-digit number and ones, a 2-digit numbers and tens, and two Z-digit numbers
- Use inverse to check calculations.

Year 3 subtract with 2 and 3 -digit numbers - subtract on an empty rumber line (ENL) by counting on.

Children should understand when to count back where appropriate, using place walue or number facts. This skill should be reinforced through mental work.

Begin to use formal column subtroction method, first using 'friendly numbers'.

Key vocabulary equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is..., difference, count on, strategy, partition, tens units, take and make, exchange, digit, value, hundneds

Key Skills for subtraction at Year 3

* Understand place value in 3-digit numbers; add and subtract 15 , 10 s or 100 s without difficulty: use this to add and subtract multiples of 1,10 , $100 \mathrm{to} /$ from 3 -digit numbers.
- Mentally subtract any pair of 2 digit numbers, e.g. 75-58
- Recognise that there are two ways of completing subtractions, either by counting up (using ENL) or by counting back, e.g. 54-3 (counting up)
* Subtract mentally using place value and number bonds, gg, 347-5, 347-
$40,347-100$)

Year 4 Subtract with up to 4-digit numbers Subtract using formal column subtraction, using take and make where appropriate.

Use Numicon and Diener to provide visual image for "toke and make"

Use complementary addition to subtract amounts of money, and for subtractions where the larger number is a near multiple of 1000 or 100

Use counting up with confidence to solve most subtractions, including finding complements to multiples of 100. Eg. 512-287 is done by-

NB. Children should be encouraged to progress to using the fewest number of jumps

Key vocabularyequal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is..., difference, count pn, strategy, partition, tens units, take and make, exchange, digit, value, hundreds, inverse

Key Skills for subtraction at Year 4

- Mentally subtract any pair of two digit numbers.
- Subtroct 3 digit numbers from 3 digit numbers using counting on, e.g. 426-278 by jumping along a line from 278 to 426
- Practise mental subtraction strategies, e.g. Round and adjust (37-9), using place value
- Use counting on in the context of money and also when subtrocting from numbers ending in zeros e.g. 4000-372
- Count backwards through zero, using negative numbers

Year 5 subtract with at least 4-digit numbers

 Including money measures and decimals.Use compact column subtraction to subtract numbers with up to 5 digits.

Use counting on for subtractions where the larger number is a multiple or near multiple of 1000 , or for decimals.

Subtroct with decimal values, including mixtures of integers and decimals and aligning the decimal point.

Key vocabulary equal to, take, take-away, less, minus, subtract, leaves, distance between, how mary more, how many fewer/less than, most, least count back, how many left, how much less is..., difference, count on, strategy, partition, tens units, take and make, exchange, digit, value, hundreds, inverse, tenths, hundredths, decimal point ${ }_{r}$ decimal

Key Skills for subtraction at Year 5

* Count backwards through zero, using negative numbers
* Add or subtract 0.1 or 0.01 to/from any decimal number with
confidence, e.g. 5.83 + 0.01 or 4.83-0.1
* Children need to utilise and consider a range of subtraction
strategies, jattings and written methods before choosing how to calculate
* Subtract larger numbers using column subtraction or by counting up
* Begin to subtract decimal numbers using counting up: 6.2-3.5
* Decide which mental methods to use and explain why

> Year 6 subtracting with increasingly large and more complex numbers and decimal values.

> Including money. mearune and decimals with different numbers of decimal places Use the compact column method to subtract more complex integers

Use compact column methad to subtract in context of money, meosures, including decimals with different numbers of decimal places.

Pupils should apply their knowledge of a fange of mental strategies, mental recall skills, informal and formal written methods when selecting the appropriate method to work out subtraction problems. Opportunities to discuss the appropriateness of methods need
 to be planned for".

Key Yoarabulary equal to, take, take-away, less, minus, subtract, leaves, distance between, how mary more, how many fewer/less than, most, least count back, how many left, how much less is..., difference, count on, strategy, partition, tens units, take and make, exchange, digit, walue, hundreds, inverse, tenths, hundredths, decimal point, decirnal

Key Skills for subtraction at Year 6

- Subtruct mentally with confidence - where the numbers are less than 100 or the calculation relies upon simple subtraction and place walue. Examples include: $6,723-400,72-46,100-64$
* Subtruct large numbers using column subtraction or counting up, e.g. 1323-758
* Subtroct decimal numbers using counting up
* Use negative numbers in context and calculate intervals across zero
- Children need to utilise and consider a morge of mental subtractionstrategies, jottings and written methads before deciding how to calculate
* Decide which methods to use and explain why

Year 1 Multiply with concrete objects, arrays and pictorial
 representations,

There are 3 sweets in one bog. How many sweets are in 5 bogs altogether?

Count in $2 s, 5 s, 10 s$

Use visual and concrete arrays and "sets of" objects to find the answers to " 3 lots of 4,2 lots of $5^{\prime \prime}$ etc.

$$
\begin{aligned}
& \square+\square=\square 0 \\
& \square+\square 0=\square \square
\end{aligned}
$$

$$
\begin{aligned}
& 6888988 \\
& 4688 \\
& 4688
\end{aligned}
$$

Use Numicon to find doubles to double 6

Key yocabalary: groups of, lats of ${ }_{3}$ times, array altogether, multiply count

Key Skills for multiplication at Year 1

* Count in multiples of 2,5 and 10
* Recognise doubles to double 6
* Solve simple one-step problems involving multiplication and division, calculating the answer using concrete abjects, pictorial representations and arrays with the support of the teacher.

Year 2 Multiplication using arrays and repeated addition.

 (Using at least 2s, 5s and 10s)Starting from zero, make equal jumps on a number line to work out multiplication facts and write multiplication.

Use arrays and Numicon to help teach children to understand the commutative law of multiplication.

Learn doubles to double 20
Begin to double multiples of 5 to 100
Begin to double two-digit numbers less than 50 with 1 s diqits of $1,2,34$ or 5

Use repeated addition on a number line.

$5 \times 3=15$

$3 \times 5=15$

Key Yocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated oddition, colurnn, row, sets of, equal groups, times as big as, once, twice, three times...

Key Skills for multiplication at Year 2

- Count in steps of 2,3 and 5 from zero and in 10 s from any mumber
* Know the $2 \mathrm{X}, 5 \mathrm{X}$ and 10 X tables and begin to say how many 10 s are in 40 or how many 5 s are in 30; recognise odd and even answers
*Write and calculate number statements using x and $=$ signs
- Show that multiplication can be done in any order
* Solve a range of problems involving multiplication, using concrete objects, arrays, repeated addition, Nurvicon, mental methods and multiplication facts

Year 3 multiply 2 -digit numbers by a single digit number

Introduce the grid method for multiplying 2 digits by 1 digit

Eg. $\quad 23 \times 8=184$

X	20	3
8	160	24

$160+24=184$

Link the layout of the grid to an arroy initially:

Demonstrate how the array links to the grid calculation

Children MUST be able to do the following before moving onto grid method:

- Partition numbers into tens and units
- Multiply multiples of ten by a single digit (Smile multiplication) using their knowledge of multiplication facts and times tables.

Key vocabulary groups of, llots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, sets of, equal groups, times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, units, value

Key Skills for multiplication at Year 3

* Understand that multiplication is commutative, e.g. 4×8 is the same os 8×4
* Know the $2 x, 3 x, 5 x$ and $10 x$ times tables. All tables need to be learned to 12 th multiple.
* Multiply ary 2-digit number by 10 or a single-digit number by 100;
* Understand the effect of multiplying whole numbers by 10 and 100.
* Multiply a 1-digit number by a 2-digit number starting to use the grid
* Solve multiplication problems involving missing numbers

Year 4 Multiply 2 and 3 digits by a single digit

 using all multiplication tables up to 12×12Developing the grid method:
Eg. $136 \times 5=680$

Move onto short multiplication (see Y5) if and whenchildren are confident and accurate multiplying 2 and 3 digit numbers by a single digit this way and are already confident in carrying for written addition.

Children should be able to:

- Approximate before they calculate and make this a regular part of their calculating, going bock to
their approximation to consider the reasonableness of their answer.
- Record an approximation to check their answer against.
- Multiply multiples of 10 and 100 bya single digit, using smile multiplication.
- Recall all times tables up to 12×12

Key vocabullary groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, sets of, equal groups, times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, units, value, irwerse

Key Skills for multiplication at Year 4

- Multiply 1 and 2 digit numbers by 10,100 and 1000; to understand place value in decimal numbers with one place.
* Know and recite $2 x, 3 x, 4 x, 5 x, 9 x, 10 x$ times tables up to 12 th multiple:
include multi- plying by 0 (e.g. $5 \times 0=0,7 \times 0=0$) or by 1
(eg. $5 \times 1=5, \frac{1}{2} \times 1=\frac{1}{2}$).
- Multiply 1- digit numbers by 2-diqit on friendly 3-diqit numbers using grid method.
- Find doubles to double 100 and beyond, using partitioning
- Beqin to double armounts of money
- Use doubling as strateqy for multiplying by $2,4,8$
* Count in rmultiples of $6,7,9,25$ and 1000

Year 5 Multiply up to 4 digits by 1 or 2 digits.

Introducing column multiplication

Introduce column multiplication by comparing a grid method calculation, in order to see how the

5	300	20	7
4	1200	80	28

Introduce long multiplication for multiplying by 2 digits

Move towards more complex numbers

Children should approximate first

Key vocabulary groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, colurnn, row, sets of, equal groups, times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, units, value, inverse, square, foctor, integer," decimal a short//long multiplication, "carry"

Key Skills for multiplication at Year 5

* Know and recite all tirmes tables including division facts.
- Multiply 2-and 3-digit numbers by numbers 12 using grid method: multiply 2 digit by Z-digit numbers using grid method.
- Identify multiples and factors, using knowledge of multiplication tables up to 12×12
* Scale up or down by a factor of 2,5 or 10
* Multiply integers and decimals by 10, 100, 1000
* Recognise and use squared, cubes and their notations

Year 6 short and long multiplication, as in year 5, and

 multiply decimals with up to 2 decimal places by a single digit.

Use this method for money and measures.
Children should:

* Use rounding and place value to make approximations before calculating and use these to check validity of answers
- Use short multiplication to (see Y5) to multiply rumbers with mare than 4 digits by a single digit; to multiply money and measures; and to multiply decimals up to 2 decimal places by a single digit
- Use long multiplication (see YS) to multiply mumbers with at least 4 diqits by a 2 -diqit mumber

Key vacabulary groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, colurnn, row, sets of, equal groups, tirnes as big as, once, twice, three times...., partition, grid method, multiple, product, tens, units, value, inverse, square, foctor, integer, decimal, short/long multiplication, 'carry', tenths, hundredths's decimal

Key Skills for multiplication at Year 6

- Recall multiplication facts up to 12×12
* Use short multiplication to multiply a 1-digit number by a number with up to 4 digits
* Use long multiplication to multiply a 2-digit by a number with up to 4 digits
* Use short multiplication to multiply a 1-digit number by a number with one or two decirval places, including amounts of money.
* Multiply froctions and mixed numbers by whole numbers.
* Multiply froctions by proper fractions.
- Use percentages for comparison and calculate simple percentages.
* Estimate answers using rounding and approximation.

Year 1 Group and share small quantities

Using both objects diagrams and pictorial representations, to solve problems involving both grouping and sharing.

Year 2 Group and share using the \div and $=$ signs.

Use objects, Numicon, arrays, pictorial representations and grouping

Arrays:

This represents $12+3$, pased an how many groups of 3 are in 12 ?

Pupils should also show that the same arroy can represent $12+4$ = 3 if grouped harizontally.

24 divided into aroups (chunks) of 6 There arg 4 aroups of 6 in 24

Know and understand sharing and grouping 6 swasts shand betwasn 3
psople, how mary do soch get?

Key vocabularys share, share equally, one each, two each..., group, equalgroups of, lots of, array, divide, divided by, divided into, division, grouping, number line,

left, left over

Key Skills for division at Year 2

* Count in steps of 2,3 , and 5 from 0
* Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recoqnising odd and even numbers.
* Calculate mathermatical statements for multiplication and division within the multiplication tables and write them using the $x, 4$ and $=$ signs.
* Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
* Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problens in contexts.

Year 3 Divide 2-digit numbers by a single digit

Example whthout remainder

$40-5$
Ask "How many $5 s$ in 40 ?

Example wath remaindar $38+6$

For larger numbers, when it becomes inefficient to count in single multiples, bigger jumps can be recorded using known facts.

Example without remainder:
$81-3$

This could either be done by workingout the numbers of threes in each jump as you go along (10 threes are 30 , another 10 threes makes 60 , and another 7 threes makes 81 . That's 27 threes altogether) or by counting in jumps of known multiples of 3 to reach 81 $(30+30+21)$ then working out the number of threes in each jump.

Example wth remainder
156-7

10. 4
2×4
40

Grouping on a number line first without, then with remainders

Key vocabulary share, share equally, one each, two each... group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, 'carry', remainder, multiple

Key Skills for division at Year 3

- Recall and use division facts for the 2, 3, 4, 5, 8 and 10 multiplication tables
- Write and calculate mathematical statements for division using the multiplication tables that they know, including for two-digit numbers divided by one digit
- Solve problems, in contexts, and including missing number problems, involving division.
- Pupils develop efficient mental methods, for example, using division facts (e.q. using 3 $\times 2=6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts ($30 \times 2=60$, so $60 \div 3$ $=20$ and $20=60 \div 3$).
- Pupils develop reliable written methods for division, starting with calculations of 2-digit numbers by 1 -digit numbers using an ENL.
- Halve even numbers up to 50 and multiples of ten to 100
- Perform divisions within the tables including those with remainders, e.g. $38 \div 5$.

Year 4 Divide up to 3 -digit numbers by a single digit.

Short division: limit numbers to NO remainders in the arswar OR carried (eoch digit must be a multiple of the devisor)

Once children are secure with division as grouping، demanstrate this using number lines, arrays etc. short division for larger 2-digit rumbers shauld be introduced, initially with carafully selacted examples requiring no calculating of remainders at all. Start by introducing the layout of short division by comparing it to an artay

Key vacabulary share, share equally, one each, two each..., group, equal groups of, lots of, arroy, divide, divided by, divided into, division, grouping, number line, left, left over, in- werse, short division, 'corry", remainder, multiple, divisible by, foctom

Key skills for division at Year 4

* Use a written method to divide a 2 -digit or a 3-digit number by a single-digit number.
* Give remainders as whole numbers.
* Recall multiplication and division facts for all numbers up to 12×12.
* Use place value, known and derived facts to multiply and divide mentally, including: multiplying and dividing by 10 and 100 and 1.
- Pupils proctise to become fluent in the formal written method of short division with exact answers when dividing by a one-digit number
* Pupils proctise mental methods and extend this to three-digit numbers to derive facte, for example $200 \times 3=600$ so $600 \div 3=200$
* Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly horder numbers. This should include correspondence questions such as three cakes shared equally between 10 children.

Year 5 Divide up to 4 digits by a single digit < or $=$ to 12, including answers with remainders

Short division including remainder answers. Please refer to Y 4 or Y3 if necessary to ensure children are confident in the steps towards short division.

The answer could be expressed as 663 remainder 5 or 663 and 5/8 or as adecimal.

Onea ehillanis undartanding of this mathed is

"Hewnany br in 2as"
44 mindinder 4"
"Haw many bs in 40"
${ }^{4} 7$ mandinder z^{2}

Division should be given in a real life context t_{r} including using money and measures, so that pupils know to round the answer up or down.

Answers could also be qivenas remainders decimalsor fractions.

$$
\frac{47 \mathrm{r} 2}{6 \longdiv { 2 8 ^ { 4 } 4 }}
$$

BUT ansury chilifen how a swourz under-
standing of what they ans doing and ans able
to use their knowledge of related focts to
zither make a rough ertimate first on hove
an idso about whether thein final answer is
nasanable ar not.

Key wocabulary share, share equally, one ench, two each... group, equal groups of, lats af, array, divide, divided by, divided into, divesion, grouping, number line, left, left aver, in- verse, short division, 'carry', renainder, multiple، divisible by, foctor quotient, prime number, prime factors, compasite number (nan-prime)

Key Skills for division at Year 5

* Recall multiplication and division facts for all numbers up to 12×12 (as inv4).
* Wultiply and divide numbers mentally, drowing upon knawn focts.
* Identify multiples and factors, including finding all factor pairs of a number, and common factarsaf twa number.
* Sohe problens involwing multiplication and division whare larger numbers ane decomposed intatheir foctors
* Multiply and divide whole numbers and thase involving decimals by 10, 100 and 1000.
* Use the worabulary of prime numbers, prime factors and campasite (non-prima) numbers.
* Wark aut whether a number up to 100 is prime, and recall prime numbars to 19
* Divide numbers up to 4 digits by a ane-digit number using the fornal written methad of short division and interpent remainders appropriately for the context
* Use reultipligation and division as imverses. Interpnet non-integer answers to division by expressing results in different woys according to the context, including with remainders, as froctions, as decimals ar by rounding (eg. $98+4=24 r 2=241 / 2=24.5225$).

Year 6 Divide at least 4-digit numbers by single and 2-digit numbers (including decimals).

Shart division (for dividing by a single digit)

Childinen should continue touse shant diverian with nowainders. They nesd to learn how to express an answer as a menaindar, a froction on as a decimal as in in thes example
It is important for children to start from rabl life problen solving contexts and for
then to consider how best to approoch a problen.
Introduce long division by chunking for dividing by 2 digits

	27	
Useful list:	$3 6 \longdiv { 9 7 2 }$	
$1 x=35$	- 720	20x
$1 x=35$	252	
$100=360$	- 252	$7 x$
$100 \mathrm{k}=3500$	0	
	Answer	27

Find out 'How many' $36 s$ ane in 9727 by subtrocting 'chunks' of 36 , until maro is nooched (or until thene is a nemaindar)
Tooch pupils towiritea 'useful list' first at theside that will help then decide what churks to use
Introduce the method in a simple wayby limiting the chaice of churks to Con we ues 10 lots? Can we 100 lote? As childinen beonne confident with the process. encouroge more efficiznt chunks to get to the answar mone quikkly (eg, 20x, 5x), and expand on their'weful' lists.
 starting paints for chillum in yourb.

Key yocabulary as previously $\&$ commonfactor

Key Skills for division at Year 6

* Recall and use multiplication and division facts for all numbers to 12×12 for more complex calculations
* Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, froctions, or by rounding, as appropriate for the context. Use short division where appropriate.
* Perform mental calculations, including with mixed operations and large numbers.
* Identify common factors, common multiples and prime numbers.
* Solve problems involving all 4 operations.
* Use estimation to check answers to calculations and determine accuracy, in the context of a problem.
* Use written division methods in cases where the answer has up to two decimal places.
* Solve problems which require answers to be rounded to specified degrees of accuracy.

